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Abstract Often extensive spectral data is collected on multiple samples with the
goal of predicting one or more properties of the sample. For example, measure-
ments can be made at hundreds of wavelengths along with the more expensive assay
values. The predictor variables are often highly correlated and it is expected that
only small sections of the wave are pertinent to the measured analytes. There is a
need to simplify or compress the predictors to both save data storage and possi-
bly de-noise the data prior to making predictive models. Our idea is to use a fac-
torial design (a two-step frame work) to explore two wavelet transformations, Haar
wavelets and Daubechies wavelets, with progressively better approximation to the raw
data curves in combination with several statistical prediction methods, including step-
wise regression, principal component regression, ridge regression and partial least
squares regression. The plan is to study prediction quality using Haar-Step, Haar-
PCR, Haar-PLS, Haar-Ridge, Daubechies-Step, Daubechies-PCR, Daubechies-PLS
and Daubechies-Ridge. Often PLS and stepwise regression can predict substance con-
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centrations equally well. In such situations, the preferred statistical method should
be the simplest method. From our studies, we conclude that the type of wavelet is
unimportant, the number of wavelets should be large enough to capture most of the
variability in the wave forms, and the choice of the statistical method depends on the
analyte.

Keywords Wavelet transformation · Spectra data · NIR prediction · k-Fold
cross-validation · Statistical models

1 Introduction

A major goal of analytical chemistry is to find cost effective ways to determine the
amount of analytes in samples. Relatively simple spectral methods are often used as
substitutes for more expensive methods. To that end, it is important to have sound
statistical methods to calibrate spectral methods. Spectral methods typically produce
a large number of highly correlated predictors. A large number of predictors can lead
to overly optimistic predictions as some of the predictors can, by chance, fit noise in the
system and as noise will change with new samples, the predictions from the training
set will not fit new observations. Correlated predictors present their own problems.
If simple multiple linear regression is used, the regression coefficients are unstable.
There are three standard methods used for data of this type, principal components
regression (PCR), ridge regression (RR), and partial least squares (PLS). To these
standard methods we add stepwise regression (Step). PLS is the method of choice
among most analytical chemist [1].

Our experimental plan is to conduct a factorial design (two-step framework) to
look at multiple aspects of statistical prediction using spectral data. We look at
two types of wavelets, the Haar wavelet and the Daubechies 4 tap wavelet. These
wavelets, described in more detail later, are small curves that can be used to approx-
imate a more complex wave form. The approximation can be made as exact as
one wants, up to giving back the original curve. We examine up to two levels of
approximation in the first example, and five levels of approximation in the last two
examples. Note that approximation can actually improve the prediction as noise
is typically removed when the wave form is approximated. In our approximation,
we select the wavelet coefficients within each sample wave form or globally over
all the samples. We examine four statistical prediction methods: stepwise regres-
sion (Step), principle components regression (PCR), partial least squares (PLS),
and ridge regression (Ridge). From the four main methods, we examine multiple
settings for each method and use some methods in combination: Haar-Step, Haar-
PCR, Haar-PLS, Haar-Ridge, Daubechies-Step, Daubechies-PCR, Daubechies-PLS
and Daubechies-Ridge. Here Haar-Step is the combination of the Haar wavelets with
stepwise regression for building prediction equations for the data. All these methods
were designed for situations where the number of predictors is large relative to the
number of samples and the predictors are themselves correlated. Note that it is tac-
itly assumed that the number of “real” predictors is small relative to the number of
samples.
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Finally, this factorial design, two wavelet types by four analysis methods, is executed
using three separate data sets to get some sense of how the effects seen hold up with
different data sets.

2 Materials and methods

The original data sets were spectra data where each observation was represented by
amplitude and frequency and the levels of the material of interest were noted. In this
format, it is typical for the number of observations to be far less than the number of
predictors. The three datasets, Baltic Sea dataset, biscuit dataset, and urine dataset,
analyzed in this paper will be described next.

2.1 Baltic sea data

Pollution can be harmful to fish and can be found in the Baltic Sea. Therefore,
researchers were interested in creating an inexpensive test to monitor the contents
of water. They investigated fluorescent spectroscopy for samples including lignin sul-
fonate, humic acids, and a detergent. Lignin sulfonate is a product of pollution from
the pulp industry, and humic acids are a natural forest product. These substances along
with detergents have severe spectral overlap and there is no spectral region where only
a single emitting compound is present [2].

Man-made water samples were created to simulate typical ranges for concentra-
tions of lignin sulfonate, humic acid, and detergents found in Swedish seawaters. The
original data set consists of 18 observations, but the published data set contained 16 dif-
ferent concentration combinations. The emission spectra readings from 27 equidistant
wavelengths were recorded using a Perkin-Elmer Model 512 double beam fluores-
cence spectrometer.

2.2 Biscuit data

The data was acquired in hopes of finding a nondestructive method for quality control
on the production line using near infrared spectral analysis on raw biscuit dough.
Responses were the percent of fat, flour, sucrose, and water in the raw dough. The
variations of the percentages of the response variables were further restricted such
that the end combination of substances would result in an edible biscuit if cooked [3].
Brown [4] had deleted one observation as measurement error, so we deleted the same
observation in our analysis. Therefore, the dataset consists of 79 observations and the
raw data is composed of 700 readings.

2.3 Urine data

Data was acquired to evaluate less expensive methods for urine analysis which provides
insight into patient’s health. Mid-IR absorption spectra were obtained by averaging
the results from two duplicate dried urine films using a Bio-Rad FTS-40A Fourier
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transform IR spectrometer to evaluate mid-IR spectroscopy in determining urine urea,
creatinine, and total protein for 200 samples [5].

The dataset has one observation where the measurements of the response variables
were unknown, so this observation was deleted from the analysis. Therefore, the dataset
consists of 199 usable observations and the raw data is composed of 2,178 readings.
The urine dataset is the only dataset in the study that was not created in a lab as actual
urine samples were analyzed.

2.4 Wavelet data

We use two types of wavelet filters to transform the spectra data into wavelet coeffi-
cients. The first is the Haar wavelet and the second is the Daubechies 4 tap wavelet.
Both of these wavelets are orthogonal wavelets. We use the default wavelet decom-
position function ‘wavedec.m’ of the wavelet package of Matlab toolbox to compute
our data. This function performs a multilevel one-dimensional wavelet analysis using
either a specific wavelet or a specific wavelet decomposition filter. We use the maximal
decomposition level which is related to the length of input data and the length of the
filter to compute our wavelet coefficient.

2.5 Wavelets coefficient selection

For each spectra data, we did not adjust the length of data by adding zero elements or
truncate any data to reset the length of data to power of 2. We just use the Matlab default
function to perform the wavelet transform and computed the wavelet decomposition
for each series, giving a nxp matrix. For each of the p columns, we looked at the sum
of the squares of the wavelet coefficients and kept the k largest components and set
other components to be zero. These calculations were done for both the Daubeches 4
tap wavelet, and the Haar wavelet.

2.6 Statistical analysis methods

When the number of potential predictors is large and/or there are high correlations
among the predictors, there are a number of numerical and statistical problems. The
simplest prediction method is stepwise linear regression. Special methods designed
for situations where the sample size is smaller than the number of parameters to
be estimated (the so-called n � p or High Dimension, Low Sample-size problem)
include Principle Component Regression, Partial Least Squares Regression, Ridge
Regression. We will give a brief description of these methods in the next; for more
details, see for example, Frank and Friedman [6].

2.7 Stepwise regression

Stepwise regression was introduced by Efroymson [7] and is designed for statistical
models selection when large numbers of explanatory variables are available. This
method consists of two steps: forward selection and backward elimination. At each
step of the algorithm, based on the criteria, e.g. residual sum of squares (SSR), the
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forward selection selects the most important variable which is not yet in the model to
enter, and the backward elimination selects the variable (among all variables that are
already in the model) that contributes least to be removed from the model based on
the criteria of SSR. The algorithm stops when there is no variable to enter the model
based on the criteria.

Two settings were established for our use of stepwise regression. For the case
defined as ‘Strict Step’, the required p value to enter into the model is<0.01 and the
required F ratio statistic p value to exit from the model is>0.15. For the case defined
as ‘Step’, the default SAS selection criteria was used, the F ratio statistic p value to
enter into the model is <0.15 and the F ratio statistic p value to exit from the model
is >0.15.

After selecting the variables in the model, multiple linear regression was performed
using the selected variables to obtain parameter estimates. These parameter estimates
were used to score the observation or cluster of observations that was removed from
the model (the holdout set used for model validation). This was repeated for all obser-
vations or clusters. It is noted that as different observations or clusters were deleted,
different variables were selected to be included in the model.

When considering a transformation, the transformation was restricted to be the
same transformation for all observations, and only applied to the leave one out case.
Box–Cox transformations were calculated for the case that includes all observations
and that transformation was applied to the case where each observation was removed.
After transforming the response, forward stepwise regression was again performed
to select predictor variables to enter in to the equation. This second model in the
transformed scale was also examined and compared to the original untransformed
model as discussed in the evaluation section.

2.8 Principal component regression (PCR)

Principal component regression was introduced by Massy [8] and has been widely
used in statistical analysis since then. The main idea of this method is to
begin with the covariance matrix V and its eigenvector decomposition, V =∑p

k=1 e2
kvkv

T
k where {ν1, ν2, . . . , νp} are the eigenvalues of V in the descending

order, and {e1, e2, . . . , ep} are the corresponding eigenvectors. PCR generates ŷk =
∑K

k=0 [average(yvT
k x)/e2

k ]vT
k x , K = 1, 2, . . . ,R, where R is the rank of V. Then the

PCR picks the one with the lowest mean square error.
After removing either one observation or one cluster, the principle components

of the predictors were calculated. To simplify calculations, the number of principal
components was restricted to be the same as different observations or clusters were
removed. Therefore, as different observations or clusters were removed, different prin-
cipal components were calculated, but the number of principal components was held
constant. However, the results for a variety of number of principal components were
calculated and the number of principal components that produced the best results was
retained. The required number of principal components for all observations was used
as a starting point. Then, principal components were added and subtracted so that all
results can be compared to each other.
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Combining stepwise and principal components was utilized, by performing step-
wise regression on the principal components. As each observation or cluster was
removed, the principal components were calculated. Then, stepwise regression was
performed to select the principal components to be included into the model. Finally,
multiple linear regression was performed to obtain parameter estimates that were used
to score the observation or cluster that was removed. This was repeated for what
was called ‘PCR Step’ and ‘PCR Strict Step’. Once the principal components were
selected, PCR Step used the default settings to perform stepwise selection. PCR Strict
Step utilized the stricter settings on the stepwise selection as defined in the stepwise
section. Since stepwise regression was to be done last, generally, a larger number of
principal components were kept before performing the stepwise regression. Therefore,
the principal components were selected to account for at least 99 % of the variability
in the predictors before stepwise regression was performed. However, there are still
some limitations of PCR, as discussed in the paper of Hadi and Ling [9].

2.9 Partial least squares regression (PLS)

Partial Least Squares was proposed by Wold [1] and has been used widely in chemical
applications where the number of predictors is larger than the number of observations.
PLS looks like PCR, but the scores and loadings are computed differently, left and
right factoring vectors. The first vector of loading are computed by first centering
Y and normalizing each column of X by subtracting the mean and dividing by the
standard deviation, then regressing each column of X on Y. It is standard to normalize
the loadings by dividing each by the sum of the squares of the elements. The linear
combination of the columns of X is used to estimate Y and the estimated Y becomes
the first vector of scores. The outer product of the scores and loadings are used to
approximate X, and the residuals are then subject to the same analysis, producing a
second pair of vectors, loadings and scores. This process is continued until the number
of vector pairs is k. Like PCR, PLS produces a series of models {ŷ1, ŷ2, . . . , ŷk} where
{ŷ1, ŷ2, . . . , ŷk} are the fitted values in the models. The best value of k is determined
through the ordinary cross-validation [10].

PLS decomposes both X (explanatory variable matrix) and Y (response vector) as
a product of a common set of orthogonal factors. X is decomposed as X = Q PT

with Qt Q = I . PLS can be performed on one response at a time or by looking at all
responses at as a group [11]. For our examples, partial least squares was applied to
each response separately.

In this paper, we computed both the original PLS and the SIMPLS de Jong’s 1993
version of partial least squares [12]. The two versions produced the same result out to
two decimal places in all cases except one, so the original version was reported in all
cases. Detail algorithms can be found in the book of Hastie et al. [22] and some other
references [6,13–17].

2.10 Ridge regression

Ridge regression was introduced by Hoerl and Kennard [18] and is especially for the
case of highly correlated predictors, a situation that is problematic in ordinary least-
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squares regression. The basic idea is to take the coefficients of the linear regression as
the solution of the penalized lease squares criterion.

âλ = arg min[average(y − aT x)2 + λaT a] = (V + λI )−1average(yx), where a
is a vector of the coefficients of the linear regression: y j = aT

j x , and λ > 0 is a tuning
parameter, which controls the strength of the penalty term.

This project used ridge regression as both a variable selection technique (Ridge
Select) and as a technique to obtain parameter estimates (Ridge All). For variable
selection, ridge regression produces ridge coefficients for each ridge constant. As the
ridge constants increase, all ridge coefficients converge to zero, but the variables with
ridge coefficients that converge to zero the slowest can be considered as the variables to
include in the model. After looking at multiple ridge constants, 0.9 was selected as the
ridge constant where the ridge coefficients were stable. Therefore the best x variable
model, is the model that includes x variables with the largest absolute value of the ridge
coefficient where the ridge constant is 0.9. Multiple linear regression was performed
to obtain parameter estimates that were used to score the one observation or cluster
that was removed. This process was repeated for all observations or clusters. Then the
best two variable model was selected and applied after removing each observation or
cluster. This was repeated until all variables were exhausted or the data matrix became
singular. Finally all models were compared and the model with the lowest Root Mean
PRESS was selected.

Using ridge regression to obtain parameter estimates simply takes the ridge coeffi-
cients for all variables as the parameter estimates. After removing one observation or
cluster, ridge regression was used to obtain the parameter estimates that we utilized
to score the observation or cluster that was removed. This was repeated for nine ridge
coefficients: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. The model with the lowest
Root Mean PRESS (defined later) was selected.

2.11 Root mean predicted residual error sum of squares (Root Mean PRESS)

Since our primary purpose is prediction, the Root Mean Predicted Residual Error Sum
of Squares (Root Mean PRESS) was examined. Here the Root Mean PRESS is defined
as the follows.

Root Mean PRESS =
√∑N

i=1(Yi − Yi Pr ed )2

N
, where (Yi − Yi Pr ed ) is the deleted residual.

The deleted residual was calculated by removing an observation from the dataset,
performing the statistical method on the remaining observations, scoring the deleted
observation with the calculated parameters from the statistical method, and calculating
the residual. This residual is called the deleted residual. When appropriate, residual
diagnosis was performed to suggest Box–Cox transformations on the response vari-
able. In cases where a transformation was performed, the comparison between the
original model and the transformed model need to be performed so that the statistics
are the same scale. Once the statistic is in the same scale, the model with the lowest
Root Mean PRESS was selected.
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In order to evaluate the statistics in the same scale, the transformations need to be
performed such that the inverse of the transformation is defined as real numbers for
all values of each observation’s predicted value. For example, the total protein content
of urine is an example of this concern. In the case where f −1(y∗

i Pr ed) does not exist,
an alternate transformation is considered. For example if y∗ = y2 = .01

and y∗
i Pr ed = −.2 then f −1(y∗

i Pr ed) does not exist. This is overcome searching for
transformation on (y + k) for some constant k such that the inverse transformation is
defined as real numbers for all values of each observation’s predicted value.

2.12 k-Fold cross-validation

Due to the fact that identical and very similar data points were found, the validity of
the Root Mean PRESS statistic to perform as expected was suspect. Any method that
can “memorize” a data set would use the very similar observations to fit the data and
produce an unrealistically good prediction. Therefore, k-fold cross-validation was used
to create another evaluation method [19]. Clusters were found using Ward’s methods.
For each cluster, the statistical procedure was done by leaving that cluster out. The
calculated parameters were used to score the cluster that was left out, and the residuals
were found. This was repeated for all clusters, and the reported statistic was the square
root of the mean squared predicted error. Here the k-fold cross-validation is defined as

k-fold cross-validation =
√∑k

c=1
∑Nc

i=1 (yi − yi Pr ed)
2

N
,

where k is the number of clusters and Nc is the number of observations in cluster
number c.

Note that transformations were not performed when calculating the k-fold cross-
validation statistic.

Since the purpose of creating the clusters was to ensure that like or very similar
observations were not used in creating the parameter estimates for observations held
out to be scored from those parameter estimates, k was taken to be the same across
all datasets as the minimum reasonable number of clusters. It was found that ten [10]
clusters accomplished this task, so this paper performed tenfold cross-validation.

2.13 Wavelets

Wavelets are a well-established tool for compressing and de-noising data, such as those
arising from time series and images. Unlike the Fourier transform, wavelet function
is compact supported and the wavelet coefficient only showed the frequency of local
region. Hence wavelet transforms have advantages over traditional Fourier transforms
for representing functions that contains discontinuities or sharp peaks.

For a detailed description of the Discrete Wavelet Transform, we recommend the
reader consider the book “Introduction to wavelets and wavelet transforms: A Primer”
by Burrus et al. [20]. A detailed description of the algorithms used would take too
much space for this paper, so we will instead give a brief introduction of discrete
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wavelet transform here. The basic idea behind the discrete wavelet transform is the
structure of multi-resolution analysis. Because the father wavelet is a scaling function,
it can be reconstructed by the finite two-scale formula φ(x) = ∑N

n=1 cnφ(2x − n),
where cn is called the scaling coefficient. If φ(x) is compactly supported, then the
support of φ(x) is contained in the finite interval [0,N]. A multi-resolution analysis is
a sequence {Vj } of a subspaces of L2(R) such that

(1) · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · ·
(2) ∪ j∈Z Vj = L2(R),∩ j∈Z Vj = {0}
(3) f (x) ∈ Vj ⇔ f (2x) ∈ Vj+1
(4) f (x) ∈ V0 ⇔ f (x − n) ∈ V0,∀n ∈ Z

Let φ(x) be a scaling function in L1(R) ∩ L2(R), define Vj = span{√2 jφ(2 j x −
n)|n ∈ Z},∀ j ∈ Z The complement space of Vj in Vj+1 is W j which is defined

by W j = span{√2 jψ(2 j x − n)|n ∈ Z},∀ j ∈ Z where ψ(x) the mother wavelet
function. For the discrete wavelet transform of data {an}, it assumed that there exists a
function f ∈ Vj for some j such that f(x) can be represented by f (x)=∑

anφ(2 j x−n).
Because Vj−1 ⊕ W j−1 = Vj , we are looking for the representation of f(x) in the

low filter space Vj−1 and the high filter space W j−1. Then f(x) is represented by

f (x) = ∑
a j−1

n φ(2 j−1x − n)+ ∑
b j−1

n ψ(2 j−1x − n).
The coefficient {a j−1

n } is the low pass coefficient of {an} and {b j−1
n } is the high

pass coefficient of {an}. By the definition of multi-resolution analysis, {a j−1
n } is cor-

responding to another function belongs to Vj−1. Then we can transform {a j−1
n } into

the next level by {a j−2
n } and {b j−2

n }. The collection of {{b j−k
n }p

k=1} is the multi-level
wavelet coefficients.

The simplest wavelet is the Haar wavelet, given by f (x) =
⎧
⎨

⎩

1{0 ≤ x < 1/2}
−1{1/2 ≤ x < 1}
0{otherwsie}

.

The scaling coefficient of Haar function is {1,1} and the wavelet coefficient of Haar
function is {1,−1}. So the discrete wavelet transform by Haar basis is down sampling
of the pair-wise average to the low pass space and down sampling of the pair-wise
difference to the high pass space.

For our analysis, we also used the Daubechies 4 tap wavelet, which, while more
complicated, is continuous. The scaling coefficient of Daubechies 4 tap wavelet is
1 +√

3
4
√

2
3 +√

3
4
√

2
3 −√

3
4
√

2
1 −√

3
4
√

2
.

The Haar basis can represent step function perfectly. When the function is a high
order function, only the constant component is vanish to the high pass filter. The
Daubechies 4 tap wavelet has vanishing moment of order 2, then the constant com-
ponent and the linear component vanish for the high pass filter. That is using the high
order vanishing moment wavelet to represent the high order function gets the better
and efficiency representation.

A nice feature of the Discrete Wavelet Transform is that it makes data-driven denois-
ing and compression of signals straightforward. Donoho and Johnstone [21] suggested
applying a soft thresholding rule. The noise level would be estimated from the data,
and this would be used as the threshold. Each coefficient would then be reduced by
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this amount k. That is, Y ∗
m,n(t) = sgn(Ym,n)max(|Ym,n| − k, 0), where sgn() denotes

the sign (1 or −1) of the argument, and Y ∗
m,n is the shrunk coefficient.

To estimate the noise level, Donoho and Johnstone suggested looking at the highest
resolution wavelet coefficients, figuring little signal would be present at this level.
They suggested using 1.48*MAD\sqrt{2*log(n)}, where MAD refers to the Median
Absolute Deviation (Median[abs(observation-Median[observations])]), a more robust
measure of spread than the standard deviation, and n is the length of the data series.

We found the Donoho and Johnstone bound too tight. Instead we experimented
by keeping a fixed number of wavelet coefficients, and tested how well each method
used with these wavelet coefficients as predictors. When adjusting shrinkage methods
to work on multiple series at once, we ranked the wavelet coefficients by which was
the largest (in sum-of-squares sense), and chose the k largest. The rest were set to
zero. This provided for reasonably construction, and about an 80+% compression of
the data. Alternatives to this scheme are certainly possible; we chose this approach
because (a) it provided reasonable reconstructions, (b) optimal selection of wavelet
coefficients is ancillary to the point we are trying to make, and (c) it requires no training
data where the response of interest is known. The implications of dropping the last
two requirements will be explored in future work.

3 Results

3.1 Baltic Sea data

The Baltic Sea data is considered a very small dataset for spectral data, but there have
been many published papers on this dataset. The data set is the result of a planned
experiment and the concentration combinations were selected, so that the predictors
had little correlation; the values of responses were spread across the range for each
variable. Three pure samples were constructed such that only one response, analyte,
was present in each of these samples. There is not much correlation between the
various response variables, and there do not appear to be any outliers when projected
down to two dimensions. From the original data, we learned that the measured levels
of detergents are very much different than the levels of the other responses so the
responses were analyzed separately.

In this small dataset, we exam two wavelet transformations with two degrees of
compression: 8 Haar, 16 Haar, 8 Daubechies and 16 Daubechies wavelet coefficients.
The leave one out statistic for the Baltic Sea for all analyses are listed in Table S-1
in Supplement. In order to compare the performance of the different combinations
of wavelets compression and statistical methods, we show detailed patterns from the
Table S-1 in Supplement for each individual response in Figs. 1, 2 and 3. The lines
do not actually exist and only exist to help show the trend. The dots represent the
statistic for each response for all the available number and types of wavelets plus the
raw spectra data. Moving from the left to the right, the number of wavelets increases,
the type of wavelets alternates and the last one is for the raw data. In Fig. 1, we see
multiple analyses perform very similar on the 16 Daubechies wavelet data, and only
Ridge All performs differently with a value close to 0.4. For the 16 Haar coefficient
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Fig. 1 The leave one out performance on the response lignin sulfonate in Baltic data

Fig. 2 The leave one out performance on the response humic acids in Baltic data

wavelet data, we see the PCR Step has a much larger value, close to 1, than all other
analyses.

From Fig. 1, the variance of all analyses lignin sulfonate appears to be smaller
on the Daubechies wavelets when compared to the Harr wavelets or the raw data.
Figures 2 and 3 also show the leave one out statistic for humic acids and detergents.
For humic acids in Fig. 2, PCR Step and PCR Strict Step using Haar wavelets appear
deteriorate as more wavelet coefficients are introduced into the data. Otherwise, the
analyses performed similar to each other, and the analysis performed similarly across
all types of wavelets, number of coefficients, and even the raw data. For detergents
in Fig. 3, PLS clearly out performs the other analyses across all datasets. Except
for PCR Step and PCR Strict Step on the raw data, the remaining analyses perform
similar for all datasets. From Figs. 1, 2 and 3 we found that the PLS out performs the
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Fig. 3 The leave one out performance on the response detergents in Baltic data

other methods. However, many other analyses perform similar for the other responses.
There does appear to be an effect for the number of wavelets and type of wavelets for
some analyses and responses, but there does not appear one setting that is best for all
analytes. Since the Baltic Sea data is so small, the analyses on the wavelet data did
not complete faster than when performed on the raw data, and the performance on the
raw data was very similar to the performance on wavelet data.

3.2 Biscuit data

The responses of interest account for about 98 % of the total ingredients of the samples,
so the remaining 2 % of materials in the biscuit dough will be treated as noise. The
substances were varied such that percentages of each response were spread evenly
across the range. From the basic statistics of the original data, we see that the percent
of flour is generally much different than the percent of the other responses. From the
correlation study, we see some large negative correlations where the most notable
is the negative correlation between sucrose and flour while water is correlated with
all other three responses. Therefore, techniques that examine all the responses at the
same time might have an advantage over techniques that examine one response at a
time.

Table S-2 in the Supplement lists the leave one out statistic for the biscuit data for
all analysis. With 700 spectra readings, the analyses on the wavelet data completed
much faster when compared to when they were applied to the raw data. For example,
PCR using the raw data was not able to complete using the available computational
resources. These values from the Table S-2 for each response are plotted in Figs. 4, 5,
6 and 7 separately. Again, the lines do not actually exist and only exist to help show the
trend. The dash line links to a point representing the case that the method forms poorly
due to the computational demands. From the results, it shows that as more wavelets
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Fig. 4 The leave one out performance on the response fat % in the biscuit data

Fig. 5 The leave one out performance on the response flour % in the biscuit data

are introduced into the data, both Haar and Daubechies wavelets with PCR, PCR Step,
and PCR Strict Step start to have difficulty predicting the response. However, with
fewer wavelet coefficients, these analyses do as well as with the other methods.
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Fig. 6 The leave one out performance on the response sucrose % in the biscuit data

Fig. 7 The leave one out performance on the response water % in the biscuit data

For the Haar wavelets and Daubechies waveles, all analyses perform well even
using only 25 wavelet coefficients. In fact, for both wavelets, all analyses perform
well when the number of coefficients is smaller than 100. The Daubechies wavelets
perform better than Haar wavelets when 100 wavelet coefficients are introduced.
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Fig. 8 The leave one out performance on the response creatinine in the urine data

3.3 Urine data

Urine will contain more compounds than was included in the previous examples and
that may create more noise in the system. The responses are the levels of creatinine,
urea, and total protein in the urine samples. In this dataset there are responses that
appear to be separated from others. Most samples should only have trace amounts
of protein. Hence, it is expected that total protein consists mostly of observations at
or near zero with a few larger observations. From the basic statistics of the original
data, we see that the 95 % decile of total proteins is much smaller than the maximum
value. It is also noted that the measured levels of urea are very much different than
the levels of the other responses; therefore, comparing error sums of squares across
the responses will be avoided. From the correlation study, there is a strong correlation
between creatinine and urea while total proteins are not correlated with either urea or
creatinine. With two correlated responses, techniques that examine all the responses
together may have an advantage over techniques that examine one response at a time,
but we do not use a combined PLS analysis.

Table S-3 in the Supplement shows the leave one out statistic for the urine data for
all analysis. PCR, PCR Step, PCR Strict Step, and Ridge All cannot be performed on
the raw data using the available computational resources. Figures 8, 9 and 10 shows
the leave one out statistic for creatinine, all analyses perform similarly while PLS on
the individual responses has a small advantage. Only creatinine shows lower error as
the number of wavelets increase. The analyses on the wavelet data took considerably
less time to complete and many of the analyses could not complete given the available
computational resources. In the Creatinime performance plot in Fig. 8, most analyses
perform quite invariantly to the number and types of wavelet, but they perform poorly
on the raw data due to computational demands.
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Fig. 9 The leave one out performance on the response total protein in the urine data

Fig. 10 The leave one out performance on the response urea in the urine data

In addition, Table S-4 in the Supplement lists the leave one cluster out statistic
for the Biscuit data for all analysis and the subsequent Figs. 11, 12, 13 and 14 plot
these values. All other analyses seem to perform similarly with very low errors when
the number of wavelets coefficients is small. PLS appears to either be either the best
or equally well for the remaining analysis for different responses. Once at least 100
wavelet coefficients are used, the performance of PCR Step and PCR Strict Step start
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Fig. 11 The leave one cluster out performance on the response Fat% in the biscuit data

Fig. 12 The leave one cluster out performance on the response Flour % in the biscuit data

to degrade. PCR was not able to be computed on the raw data using the available
computational resources.

The Table S-5 in the Supplement lists the leave one cluster out statistic for the
urine data for all analysis and the subsequent Figs. 15, 16 and 17 plot these values.
PLS performs worst when looking at responses creatinine and urea. PCR performs
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Fig. 13 The leave one cluster out performance on the response Sucrose% in the biscuit data

Fig. 14 The leave one cluster out performance on the response Water% in the biscuit data

worst in total protein. The other analyses appear to perform similarly over the num-
ber of wavelets. Again, some methods perform poorly on the raw data due to the
computational demands.
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Fig. 15 The leave one cluster out performance on the response creatinine in the urine data

Fig. 16 The leave one cluster out performance on the response total protein in the urine data

4 Discussion and conclusions

When the number of predictors is large and the predictors are correlated, there are a
number of numerical and statistical problems. In such a case, there is a need to simplify
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Fig. 17 The leave one cluster out performance on the response urea in the urine data

or compress the predictors to save data storage and de-noise the data. Working with
wavelets was effective; usually the wavelets were better predictors than the raw data
in all three of our examples. The dimension reduction from the wavelet analysis has
additional computational advantages as some statistical methods take considerably
more processing time on the raw data than on the wavelet data. For example, according
to the SAS logs, it would have taken four days to complete the k-fold CV analysis
for ridge regression on the raw urine data, but at 50 wavelet coefficients the process
completed very quickly.

Stepwise regression has a distinct interpretability advantage for spectral data
because the procedure would identify either wavelengths or locations and granularities
that are important in describing the response. Often PLS and stepwise regression can
predict substance concentrations equally well, the preferred statistical method should
be the simplest method, step-wise regression.

In this paper, we conclude that factorial experimentation, computing the analysis
using multiple combinations of analysis settings, can be used to determine the factor
settings for a given type of analysis problem. From our studies, we propose to use a
two-step framework to analyze spectral data. When the dataset is small, such as the
Baltic data, data compression is also necessary because it can reduce the error when
build up prediction equations. When the number of predictors is large, wavelets offer
many advantages: dimension reduction, noise reduction, and the ability to point to
informative regions of the wave form.

For the Baltic Sea data set, PLS on the raw data was effective relative to wavelets.
The number of predictors was not large. For the other two data sets, wavelets were
more effective than raw data. For the biscuit data set, all statistical methods worked
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well as long as the number of wavelets was 50 or smaller. For 100 or more wavelets a
number of methods appeared to break down.

The urine data set was the most complex data set. The number of predictors was
large and the chemical composition was more complicated. There were some erratic
results where the model fit was not good. We removed one outlier observation (200
Haar, Urea, PCR Step) that have a very large prediction error of 799.2. After this
observation was removed from consideration, there are some general comments that
can be made. The type of wavelet had relatively little effect on the prediction error. For
Cretinine and Total Protein, the number of wavelets was not important. For all three
analytes 100–150 wavelets were able to capture the information in the wave forms.
For Total Protein all statistical methods performed well, with PCR Step and PLS
performing best. For Urea, there was more variability among the statistical methods
with Ridge All performing best.

Having said all that, finding a good set of analysis conditions appears to require
checking many conditions for the data set at issue. The type of wavelet was relatively
unimportant. The number of wavelets should be large enough to capture most of the
variability in the wave forms. The choice of the best statistical method depended on
the analyte.
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